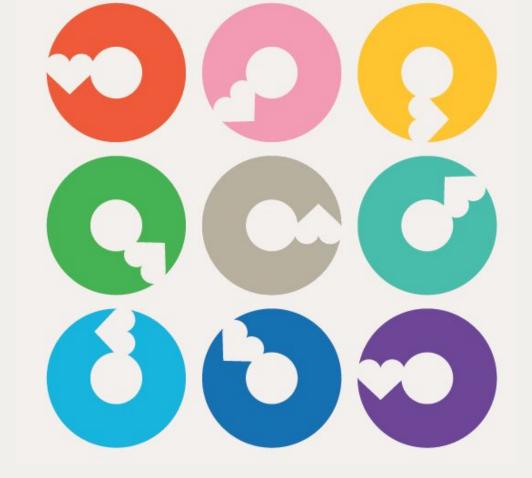
Introduction to Climate Training


The Connection Between Reuse & Climate

Climate Training

The Connection Between Reuse and Climate

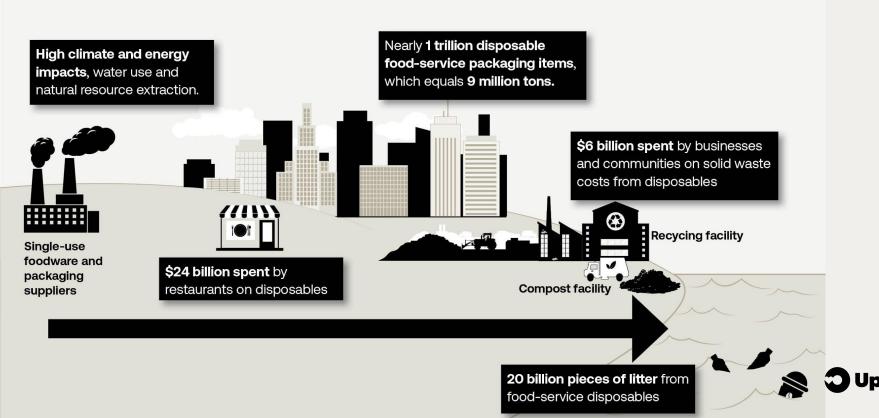
The Key Issues - Climate & Plastics

Global carbon emissions up 90% since 1970¹

A planet of 7.8 billion embracing a throw-away economy = not sustainable

As of 2015, there was 150 million metric tons of plastic in our oceans²

The plastics industry is expanding, fueling a petrochemical infrastructure buildout



70%

of litter on streets and in waterways is disposable food & beverage packaging³

Today's "one-way throw-away" food service model

Waste Management Mythology

Recyclable: myth

- Only 5% of plastic waste has been recycled
- Mostly down-cycled (doesn't turn off the tap)
- Foodware too dirty to recycle
- Recyclable better for the environment only 56% of the time

Compostable: myth

- Packaging lowers compost quality and value
- Adds toxic chemicals to compost
- Often sent to landfill with 30X more GHG impact 6

Will Banning Plastic Solve the Problem?

150 MMT of plastic in our oceans as of 2015⁷

And the problem is growing...

Are single-use plastic bans the right solution?

The Problem isn't just plastic - it's single-use itself

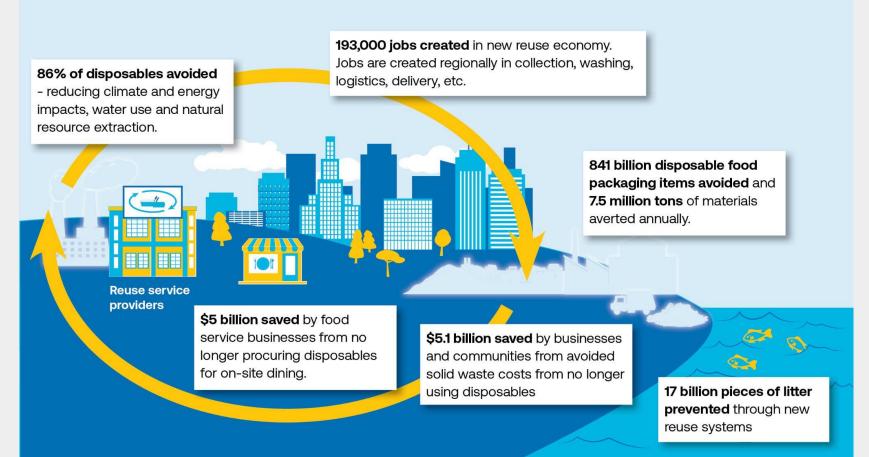
Bio-based plastic

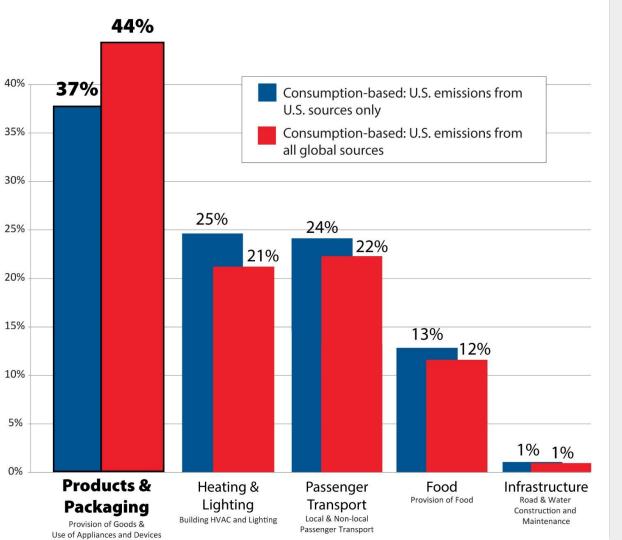
- Contaminates compost
- Fossil fuels used to grow and process
- Agriculture impacts (water pollution, dead zones)

Aluminum

- Average recycled content 73%
- Non-recycled = 5 x more carbon emissions
- Bauxite mining releases perfluorocarbons 9,200 times more harmful than CO2

Paper


- 3 billion trees/ year for packaging (½ of trees logged)
- Greater GHG emissions compared to plastic
- Biodiversity loss, soil erosion and sedimentation, and eutrophication


Wood / Bamboo

- Monoculture like agriculture (water pollution, dead zones)
- Biodiversity loss, soil erosion and sedimentation, and eutrophication

Tomorrow's new reuse economy for food service

Greenhouse gas emissions sources

Sector-based Vs. Consumption-based¹⁰

Sector-based Inventories: Current status quo

- GHG emissions from household use of fuel and electricity
- Consumption of goods and services produced in the city
- GHG emissions from EXPORTED goods and services

Consumption-based Inventories: The future

- GHG emissions from household use of fuel and electricity
- Consumption of goods and services produced in the city
- GHG emissions from IMPORTED goods and services

Consumption inventory Global approach Emissions anywhere in service of things consumed in Minnesota

In-boundary inventory Snow globe approach Emissions produced in Minnesota, regardless of where things are consumed

C40 CBEI Analysis¹³

- Analysis of 79 C40 cities
- GHG emissions are as much as 60% higher than currently estimated
- Two-thirds of these emissions are from imported goods and services
- CBEIS = 3X the size of their emissions for 15 cities

Limitations of CBEIs¹⁴

- CBEIs lump consumption into categories
- Meat production has a larger emissions footprint than other types of food

2. Such categorization also treats all residents consumption as equal

- Consumption levels tend to vary widely within cities
- Research shows high-income households typically have a larger consumption footprint

3. Emissions can occur at different life-cycle phases

- For food, most emissions are associated with production
- For appliances, the majority of emissions result from use

Consumption Reduction & Reuse Language in CAPs

- Consumption Reduction Language (52 CAPs)
 - Nineteen INCLUDE specific language
 - Eleven **SOMEWHAT** include language
 - Seventeen DON'T include any language
- Reuse Language (52 CAPs)
 - Nineteen **INCLUDE** specific language
 - Twelve **SOMEWHAT** include language
 - Twenty-one **DON'T** include language

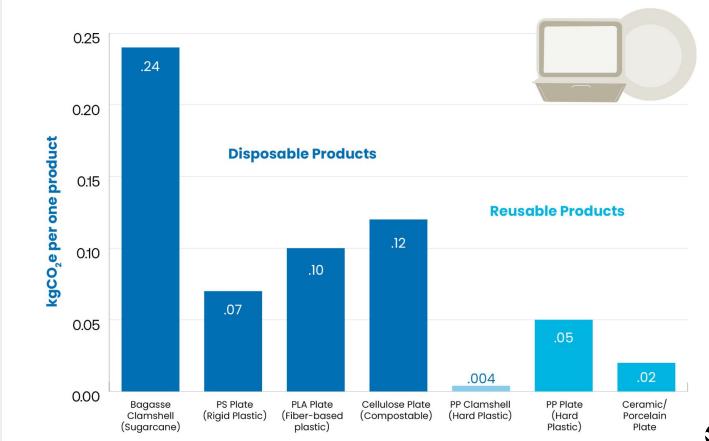
CAP Model Language

City & County of Los Angeles, CA

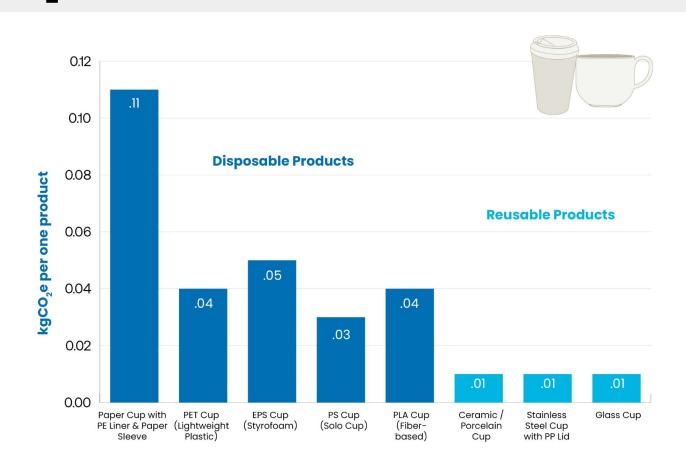
- Reuse targets: 25% by 2025; 50% by 2035
- Single-use plastics reduced 15% by 2030

Philadelphia, PA

Reuse pilots and educational programs

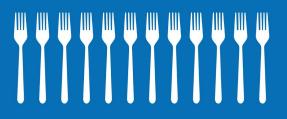

San Francisco, CA

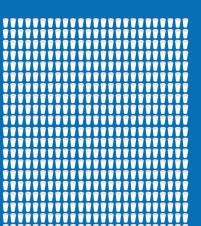
- Cut waste generation by 15% by 2030
- Policy to reduce and reuse in food service

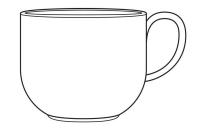


CO₂e Impacts: Disposables Vs. Reusables

CO₂e Impacts: Disposables Vs. Reusables







Using 500 paper cups consumes nearly 370 gallons water

Using and washing one ceramic cup 500 times consumes only 53 gallons of water.

CO,e Impacts Scenario

City Name: Howard City City Population: 800,000

Assumption: 3 items used per day, per person for one year (1 Plate, 1 Clamshell, 1 Cup)

Total Citywide CO, e Emissions per year:

Disposables: 131,400 metric tons

Reusables: 9,928 metric tons

Savings of 121,472 metric tons CO₂e

Reuse and Environmental Justice

Impacts to Communities

How Reuse is a mechanism for a 'Just Transition'

An economic and political power shift from an extractive economy to a regenerative economy 30

- Non-toxic reusables reduce overall pollution, toxic chemical exposure, and litter
- Reuse services create good local jobs
- Reuse can help 'turn off the tap' for single-use plastics
- Reuse can be used as a climate mitigation strategy

Call to Action:

Advocate for the following:

- The use of CBEIs for general accounting of GHG emissions
- Build source reduction and reuse concepts into existing CAPs
- Specific source reduction and reuse targets in CAPs
- Reuse as one pathway towards a 'just transition'

Engage directly with:

 Climate advocates, businesses & institutions, and environmental justice stakeholders to underscore the climate and community benefits of switching to reusables

Climate, Plastics & Reuse Toolkit

- Briefing Document
- Fact Sheets
- "Train-the-Trainer" Demo
- Sample Letter to Legislator

LINK

Resources for Building Reuse Communities

Reports

- The Reuse Wins report
- Reuse Wins at Events
- Reuse Wins Fact Sheets
- The Reuse Policy Playbook
- The New Reuse Economy

Training Presentations

- Envisioning Indisposable Communities
- Policies for Indisposable Communities
- The Connection Between Reuse & Climate
- Organizing for Reuse

Podcasts: Join us for the <u>Indisposable Podcast</u> which celebrates cutting edge solutions plastic pollution and reuse communities and features heros of the reuse movement.

Blogs & Vlogs: At Upstream, we are passionate about sharing a variety of perspectives on reuse and in our <u>blog and vlog series</u>, you can get the wrap on weighty topics in just a few minutes.

Indisposable Live™: Upstream's <u>Livestreams</u> provide a more interactive version of in-depth investigation into the reuse solutions to our plastic pollution and climate crisis. They feature experts and radical thinkers who are helping to build the new reuse economy.

